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Abstract. In this paper we present augmented Lagrangians for nonconvex minimization
problems with equality constraints. We construct a dual problem with respect to the presented here
Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use
these results and modify the subgradient and cutting plane methods for solving the dual problem
constructed. Algorithms proposed in this paper have some advantages. We do not use any
convexity and differentiability conditions, and show that the dual problem is always concave
regardless of properties the primal problem satisfies. The subgradient of the dual function along
which its value increases is calculated without solving any additional problem. In contrast with the
penalty or multiplier methods, for improving the value of the dual function, one need not to take
the “‘penalty like parameter’ to infinity in the new methods. In both methods the value of the dual
function strongly increases at each iteration. In the contrast, by using the primal-dual gap, the
proposed algorithms possess a natural stopping criteria. The convergence theorem for the
subgradient method is also presented.
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1. Introduction

Let X be any topological linear space, let SC X be a nonempty subset of X, let Y be
a real normed space and let Y* be its dual.
We will be concerned with the nonlinear programming problem:

(P) minimize f,(x) over all x in S satisfying f(x) =0

where f, is a real-valued function defined S and f is a mapping of S into Y.

We will denote by | - || the norm of Y, by |- ||« the norm of Y*, and the value of
the linear continuous functional y* € Y* at the point y €Y by (y, y*).

For every xeX and yEY let

L) ifxeSand f(x)=y

P, y) = + oo otherwise

(1)
and define the perturbation function associated with (P) as
h(y) =inf ®(x, y). )
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Let us denote the convex case of the problem (P) by (P,). It is well-known that the
ordinary Lagrangian function is defined as

Lo(x, y*) = —323 {y, y* — @, y)}. (3)

This definition leads to the following expression which allows to construct a dual
problem in the convex case:

Lo(x, y*) =f,(x) + (f(x), y*) for (x, y*)EX XY*.
This definition corresponds to the dual problem
(P%*) maximize g,(y*) over all y*&Y*,
where
go(y*) =inf Lo(x, y*).
The optimal values in problems (P,) and (P%) can be expressed as

inf P, =inf sup L,(x, y*) and sup P¥= sup inf L,(x, y*),
XES y y*ey* X€S

b v
respectively. It is well-known that the optimal values in these two problems satisfy
inf P, =sup P,*, (4)

and a necessary and sufficient condition for the equality to hold is the existence of a
saddle point of the Lagrangian L,; cf. Rockafellar (1970), Ekeland and Temam
(1976) and Bazaraa et al. (1993). It was also proved that a pair of vectors x € S and
u € Y* furnishes a saddle point of the Lagrangian L, on S X Y* if and only if

x is a (globally) optimal solution to (P),} (5)

h(y) = h(0) + (y, u) for all vy,

where h is the perturbation function defined by (2). Unfortunately, without
convexity and assumptions dependent on it, one cannot very well ensure the
existence of some u for which the inequality in (5) holds. A number of authors have
addressed the question of whether the discrepancy in (4), which is called a “duality
gap’ in nonconvex programming, could be eliminated by changing the Lagrangian
function. Such a Lagrangian, called the augmented Lagrange function, may be
obtained by adding linear or quadratic penalty expressions to L,. In the finite
dimensional case, linear penalty expressions was introduced by Pietrzykowski
(1969) and Zangwill (1967). Quadratic penalty expressions was first proposed in the
inequality case by Courant (1943). The addition of squared constrained terms to the
ordinary Lagrangian was first proposed by Hestenes (1969) and Powell (1969) in
association with a special numerical approach—called the method of multipliers—to
problems having equality constriants only; cf. Fletcher (1979), Haarhoff and Buys
(1970), Kort and Bertsekas (1972) and Poljak (1970). Penalty expressions with a
possible mixture of linear and quadratic pieces have been suggested by Rockafellar
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(1993). All these approaches was generalized by Rockafellar and Wets (1998). They
introduced a general augmenting function o: R™ —R, which is proper, lower
semicontinuous and convex, with min ¢ =0, arg min o ={0} and defined an
augmented Lagrangian with penalty parameter r >0 in the form I(x, y, r) =inf,
{D(x, u) + ro(u) —(y, u)}, where f, = ®(-,0). In particular, the augmented Lagran-
gian generated with the augmenting function o(u) = |ul| was termed a ‘sharp
Lagrangian’.

In recent years the duality of nonconvex optimization problems, in more
generalized form, was studied in the framework of the so-called abstract convexity
(see Pallaschke and Rolewicz, 1997; Rubinov, 2000; Singer, 1997). Abstract
convexity has found many applications in the study of problems of mathematical
analysis and optimization. The books by D. Palaschke and Rolewicz (1997) and by
I. Singer (1997) contain detailed presentations of many results of abstract convex
analysis, which are concentrated around notions of subdifferentials, conjugations
and dualities. Special kinds of nonlinear analogues of Lagrange and penalty
functions are studied in the excellent book by A.M. Rubinov (2000).

Computational considerations in nonconvex problems have led to algorithms
based on Lagrangian duality. Naturally, the differentiability properties of dual
functions are a very important determinant of the type of dual method that is
appropriate for a given problem.

The main purpose of this paper is to present solution algorithms for nonconvex
mathematical programming problems with respect to an augmented Lagrangian of
the special type. In this paper we modify the subgradient and cutting plane methods
for maximizing the nondifferentiable dual function. We consider for simplicity,
equality constraint case and obtain the duality relations with respect to the
constructed here Lagrangian. In order to calculate augmented Lagrange function we
use the formula (3)—a natural definition of the Lagrange functions, by taking
—clly|| + ¢y, y*) instead of (y, y*). We present conditions under which a duality gap
can be eliminated by using such a Lagrangian for nonconvex mathematical
programming problems. As was mentioned above, such a Lagrangian may be
considered as the sharp Lagrangian presented by Rockafellar and Wets (1998), on
the one hand and as a special case of the extended Lagrangians defined in the book
by Rubinov (2000), on the other hand. Therefore some theorems concerning the
duality results are presented without proofs.

Note that subgradient methods were first introduced in the middle 60s; the works
of Demyanov (1968), Poljak (1969a, 1969b, 1970) and Shor (1985, 1995) were
particularly influental. The convergence rate of subgradient methods is discussed in
Goffin (1977). Cutting plane methods were proposed by Cheney and Goldstein
(1959) and Kelley (1960). For further study of this subject see Bertsekas (1995) and
Bazaraa et al. (1993). These methods were used for solving dual problems obtained
by using ordinary Lagrangians or problems satisfying convexity conditions. How-
ever, our main purpose is to find an optimal solution to the primal problem and
unfortunately, without convexity assumptions we cannot very well ensure the
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equality of optimal values of primal and dual problems constructed by this manner.
We show that a dual function constructed in this paper is always concave. Without
solving any additional problem, we calculate the subgradient of the dual function
along which its value increases. We use this result in the subgradient and cutting
plane methods for improving the value of the dual function and for choosing the
better values of the primal and dual variables.

2. Duality
Consider the primal mathematical programming problem defined as:
(P) inf P =inf f,(x) subject to x €S, f(x)=0.

Every element x € D, where D is a feasible set defined as D = {x € S|f(x) = 0}, such
that f,(x) =inf P will be termed a solution of (P). By a general definition of
Lagrangians the augmented Lagrangian L associated with (P) will be defined as

L(Xv u, C) :)!21:( {(I)(X, y) + C”y” - <y’ U>} )

for xeX, yeY, c€[0, + ), where the function ®(x, y) is defined in (1). By
using the definition of &, we can concretize the augmented Lagrangian associated
with (P):

L(x u,c) = inf {D(x, ) + cllyll = (v, w} =, + cll el = (F), w,
for x€S, uEeY* and c €[0, + «).
The dual function H is defined as:
H(u, c) = |21; L(x,u,c), forueY* ce[0, +xo)=R, . (6)

Then, a dual problem of (P) is given by
(P*) sup P*= sup H(u, c).

(u,c)EY*XR

Any element (u, ¢) € Y* X R, with H(u, c) =sup P* is termed a solution of (P*).

LEMMA 1. For every ueY*, yeY, y#0 and for every r &R there exists
c €R, such that c|y|| =y, uy>r.

Proof. Let u€eY*, y€Y, y#0 and r€R,. We choose c €R,, with ¢ > |u + r/
Iyll- Then cliyll = flullx - [yl > r. Since [lull-[Iyl|=y. u) we have cllyl|—<y, u)>
r. g

It follows from this lemma that
f,x), fx)=0

L _ 0
et o= (020
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Hence,

inf  sup  L(x,u,c)=inf{f,x)|xES, f(x)=0}=infP. @)
XES (u,c)EY*XR
This means that the value of a mathematical programming problem with equality
constraints can be represented as (7), regardless of properties the original problem
satisifes.

Proofs of the following four theorems are analogous to the proofs of similar
theorems presented for augmented Lagrangian functions with quadratic penalty
expressions or with more general augmenting functions. See, for example, Rockafel-
lar (1993) and Rockafellar and Wets (1998).

THEOREM 1. inf P =sup P*.

THEOREM 2. Suppose that inf P is finite. Then a pair of elements x €S and (u,
c)eY* xR, furnishes a saddle point of the augmented Lagrangian L on S X
(Y*xR,) if and only if x is a solution to (P), (u,c) is a solution to (P*) and inf
P =sup P*.

THEOREM 3. A pair of vectors x €S and (u, c) € Y* X R, furnishes a saddle pont
of the augmented Lagrangian L on S X (Y* X R, ) if and only if

X is a solution to (P), }
h(y) = h(0) +y, u) —cllyl| for all y,

where h is a perturbation function defined by (2). When this holds, any a > c will
have the propety that

[x solves (P)]<[x minimizes L(z, u, a) over zE€S].
THEOREM 4. Suppose in (P) that f, and f are continuous, S is compact, and a
feasible solution exists. Then inf P =sup P* and there exists a solution to (P).

Furthermore, in this case, the dual function H in (P*) is concave and finite
everywhere on Y* X R, , so this maximization problem is effectively unconstrained.

The following theorem will also be used as a stopping criteria in solution algorithms
for dual problem in the next section.

THEOREM 5. Let inf P = sup P* and suppose that for some (u, c) €Y* X R, and
X ES,

min L(x, U, €) = f,(X) + [[f()]| = (F(), 0) €)

Then x is a solution to (P) and (u, c) is a solution to (P*) if and only if
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f(x)=0. 9)

Proof. Necessity. If (8) is satisfied and x is a solution to (P) then x is feasible and
therefore f(x) = 0.

Sufficiency. Suppose to the contrary that (8) and (9) are satisfied but x and (u, )
are not solutions. Then, there exists X € D such that f,(X) <f,(x). Hence

fo(X) <fo(x) = fo(x) + [ f(x)| — (f(x), u) = H(u, c)
=min L(X, U, )< sup miQ L(x, u, c) =sup P*

XES (U,C)EY*XR xXe

—inf P <f,(X),

which proves the theorem. [

3. Solving the dual problem

We have described several properties of the dual function in the previous section. In
this section, we utilize these propeties to modify the subgradient and cutting plane
methods for maximizing the dual function H. Theorems 2, 3 and 4 give necessary
and sufficient conditions for an equality between inf P and sup P*. Therefore, when
the hypotheses of these theorems are satisfied, the maximization of the dual function
H by using the subgradient method or the cutting plane method will give us the
optimal value of the primal problem.

We assume throughout this section that X =E" and Y = E™ are finite dimensional
spaces, and the hypotheses of Theorem 4 are satisfied. We consider the dual problem

maximize H(u, c) zmeigl L(x,u,c) zmeig {f,(¢) + [ fO)| — u” f(x)}
subject to (u,c)EF=E™ XR__,

where u’ is the transpose of the vector u, and u’ f(x) denotes the scalar product of
vectors u and f(x).
It will be convenient to introduce the following set:

S(u,c) = Arg min [f(x) + cll fX)]| — u" f(x)] .

The assertion of the following theorem can be obtained from the known theorems on
the subdifferentials of the continuous maximum and minimum functions. See, for
example, Polak (1997).

THEOREM 6. Let S be a nonempty compact set in X and let f, and f be continuous,
so that for any (u, c) €E™ X R, S(u, ¢) is not empty. If x € S(u, ¢), then (— f(x),
[ fC)I) is a subgradient of H at (u, c).
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3.1. SUBGRADIENT METHOD

Initialization Step. Choose a vector (u,,c,) with ¢, =0, let k=1, and go to the
main step.

Main Step 1. Given (u,, c,), solve the following subproblem:
Minimize f,(x) + c,||f(x)|| — u; f(x)
subject to x €S

Let x, be any solution. If f(x,) =0, the stop; by Theorem 5, (u,, c,) is a solution
to (P*), x, is a solution to (P). Otherwise, go to step 2.
2. Let

Uerq = U — S F(X), Gy = C + (S + ‘9k)||f(xk)|| ) (10)

where s, and &, are positive scalar stepsizes, replace k by k + 1, and repeat step 1.

The following theorem shows that in contrast with the subgradient methods
developed for dual problems formulated by using ordinary Lagrangians, the new
iterate strictly improves the cost for all values of the stepsizes s, and &,.

THEOREM 7. Suppose that the pair (u,, ¢,) EE™ X R, is not a solution to the dual
problem and x, €S (u,, c,). Then for a new iterate (u,,,, C.,,) calculated from
(10) for all positive scalar stepsizes s, and & we have:

0 < H(uk+1’ Ck+1) - H(uk’ Ck) = (2Sk + gk)”f(xk)Hz *

Proof. Let (u, ¢, )€E™XR,, x, €S(u,, ¢,) and (u,.,, C.,,) iS a new iterate
calculated from (10) for arbitrary positive scalar stepsizes s, and . Then by
Theorem 6, the vector (—f(x,), |f(x)) EE™ X R, is a subgradient of a concave
function H at (u,, c,) and by definition of subgradients we have:

HQu,.,, ¢.,)—H(u,, c)
< (U = W) (= F()) + e — IR
= s,l[fx)” + (i + s FxI” = (25 + &l x|
On the other hand
H(U 1 Ciia)
=min {£,00 + [0 — Ui, FO}
=min {10 + ¢ | f60ll = ufe) + G + 8 FxI T + 5, F)" £}
=min {5,600 + 6| 760l = uife) + G + sFN 1T — sl Fex ] 176
=min {f,(x) + ¢ fe)] — uefx) + &l FI el
=min {f,() + ¢ + &l fxIDIFeOl - uife}
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Now suppose that the last minimum attains for a some X € S. If f(X) were zero,
then by Theorem 5, the pair (u,, ¢, + &]|f(x,)|) would be a solution to the dual
problem and theorefore

min {600+ @+ &l DI TG — ui F0)
>min {f,( + ¢76)]| - uL 60} = H(u,, ©),
because of (u,, c,) is not a solution. When f(X) # 0 then
min {f,() + (6, + & DI - i f)}
=f(%) + © + &l fxIDIFEOI — uif(X)
> 1) + SR — ugf(%) =min {f,6 + ¢, — Ui F} = Huy, ©,).
Thus we have established that H(u, . ,, ¢,,,)>H(u,, ¢,). O

The following theorem demonstrates that for the certain values of stepsizes s, and
&, the distance between the points generated by the algorithm and the solution to

the dual problem decreases at each iteration (cf. Bertsekas (1995), Proposition
6.3.1).

THEOREM 8. Let (u,,c,) be any iteation, which is not a solution to the dual
problem, so f(x,) # 0. Then for any dual solution (u, c), we have

||(l_,l, 6) - (uk+11 Ck+1)” < H(l_l, 6) - (uk’ Ck)”
for all stepsizes s, such that

2(H(u, ¢) — H(u,, )
5] f(x )l '

0<s, < (1)

and 0< g <s,.

Proof. We have
U, ©) = Uess Cedl =lU = u” +le =00l
=[lu = Uy = s FxNI” + Ic = @ + (s + sl fFxIINI
=lu = u + 25,0 = u) f(x) + )1’
+(€—¢)” =265 + 5)(€ — eI FxII + G + &)1 FII”
<Ju = P + 25U = u) fx) + &) FEII
+ (¢ — ¢)” = 25,(c — ) Fx Il + (28 FxII

where the last inequality is a result of inequalities ¢ —c, >0, ||f(x,)|>0, and
0 < g <s,. Now, by using the subgradient inequality
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H(u, ¢) = H(u,, ¢) =< (u—u)'(—f(x)) + (c — c)I[f(x ),
we obtain
o= vl + fe =l
< ”a o Uk||2 + |6 o Ck|2 o ZSk(H(ﬁ, 6) —HUu, ¢)) + 5(Sk)2||f(xk)||2 . (12)

It is straightforward to verify that for the range of stepsize of Eq. (11) the sum of the
last two terms in the above relation is negative. Thus,

U= U l® 16— <fu—ulP + e —cl*. O

The inequality (12) can also be used to establish the convergence result for the
subgradient method.

THEOREM 9. Assume that all conditions of Theorem 4 are satisfied. Let (u,, c,) be
any iteration of the subgradient method. Suppose that each new iteration (u,. ,,
C..,) Is calculated from (10) for the stepwise
H- H(u,, ¢)
Ss=——. .2 _and 0<g <s,,
AT A
where H = H(U, ¢) denotes the optimal dual value. Then H(u,, c,)— H.

Proof. By taking s, = (H — H(u,, ¢,))/5||f(x)|I* in (12) we obtain:

i . _ _ (H— H(u,, .)’
u—u P +lc—c. P <lu—ulf+lc—cl -7 —m—

51 f(x,)II”
which can be written in the form
(H = H(u, ¢)* <)L = ul® + 1€ — ¢ [?)
- (Hl_J - uk+1H2 + ‘6 - Ck+l‘2)] . (13)

It is obvious that, the sequence {|ju — u,|* + |c — c,|’} is bounded from below (for
example, by zero), and by Theorem 8, it is decreasing. Thus, {lu — u/|* +|c — ¢, |*}
is a convergent sequence. Hence

lim [(lu =P +lc —c ") = (lu —ue.f® +[e — ., [ =0.

On the other hand, since S is a compact set and f is continuous, {5||f(x,)|]’} is a
bounded sequence. Thus, (13) implies
H(u,, ¢,) —>H . O

Unfortunately, however, unless we know the dual optimal value H(u, c), which is
rare, the range of stepsize is unknown. In practice, one can use the stepsize formula
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o (H, —H(u,, c,))
Sk = 2 ’
5[ f(x

(14)

where H, is an approximation to the optimal dual value and 0 < ¢, < 2. By Theorem
7, the sequence {H(u,, ¢, )} is increasing, therefore to estimate the optimal dual value
from below, we can use the current dual value H(u,, c,). As an upper bound, we can
use any primal value f,(x) corresponding to a primal feasible solution x.

Now we demonstrate the proposed algorithm on some problems. Note that,
inequality constraint problems can be reduced to equality constraint one by adding
slack variables to left hand sides of inequalities. The program package ‘LINGO 6.0’
has been applied for solving dual unconstrained problems. The stopping criteria is
taken as || f(x“)|| < 10 *. For description of results of the numerical examples we use
the following notations:

e k is the number of iterations;

(u*, ¢*)—is a vector of Lagrange multipliers at kth iteration;

x* is a minimizer of Lagrange function L(x, u,, c,) over x € S;

H is the upper bound for the values of dual function;

s* is the stepsize parameter calculated at the kth iteration by the formula
s, = (H - H(u,, Ck))/SHf(Xk)HZ;

o £=0.955;
e X* is an optimal primal solution;
o f5="1(*).

EXAMPLE 1. (see Himmelblau, 1972) (Table 1)

f,(x) + 1000 — X% — 2x2 — X2 — X, X, — X X —> Min
subject to

f)+x2+x2+x2-25=0

f,(x) =8x, +14x, + 7x; —56=0
and

X;=0,i+1,2 3

x* = (3512, 0.217, 3.552), f*=961.715

EXAMPLE 2. (see Khenkin, 1976) (Table 2)

Table 1. Summary of the computations for Example 1

k uf us c X4 X5 X5 H HE® ¢ [ s*

1 0 0 0 5 5 5 2000 850 102.083 0.2207
2 —11035 -19643 4.3935 35113 02171 3.553 2000 961.7152 2.23E—06
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Table 2. Summary of the computations for Example 2

k u* c* X; X5 X5 H HU ¢ [fM) s

1 0 0 0 0 123457 2 0 2.734568  0.053491
2 —0.1463 0.2852 4.06E—-02 4.06E—-02 O 2 867E—-02 1.185017  0.272498
3 —04692 09149 229E-01 229E-01 O 2 0.3004191 5.89E —08

f,(x) = 0.5(x, + X,) + 50(x, — X,)* + sin®(x, + X,) — min
subject to

f) =, —1)°+(x, —1)* + (x, — 1) — 1.5<0.

x* = (0.229014, 0.229014), f* =0.3004190265 .

By adding a slack variable x, to the left-hand side of the single constraint we obtain
an equality constrained problem.

EXAMPLE 3. (see Khenkin, 1976) (Table 3)
f,(x) = 0.5(x, + X,)* + 50(x, — X, ) + X2 + |x5 — sin(x, + x,)| — min
subject to
f)=(x, —1)°+ (x, — 1)+ (x, — 1) — 1.5<0.
x* = (0.229014, 0.229014, 0.4421181), f¥ =0.3004190265 .
By adding a slack variable x, to the left —hand side of the single constraint we
obtain an equality constrained problem.
EXAMPLE 4. (see Floudas, 1999) (Table 4)
f(x, y) =[a, x] — 0.5[x, Qx] + by — min
subject to

Table 3. Summary of the computations for Example 3

k u X X X5 x¥OH HUS )[R s

1 0 0 0 0 0 0 2 0 15 0.177778
2 —0.2667 052 022904 0.22899 044218 0 2 0.3004193 1.18E-07

Table 4. Summary of the computations for Example 4

k k k k k k k k k k k k k k
k u, u; c, X)Xy X3 Xy X Xg X5y H HuSc) [fx9] s

7
1 0 0 0 111 11 0 0 20 0 —4755 217313 0.201376
2 —17117 —-40275 85335 0 1 0 1 1 050 20 0 -—-3615 O
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f,(x) = 6x, +3x, +3x; +2x, + X —6.5<0
f,(x) =10x, +10x, +y —20=<0

and
0=x;=<1,i=1,2, 34,5 y=<0,

where a=(—10.5, —7.5, —35, —25, —15), b= —10, Q=100I, and I is the
identity matrix.
x*=(0,1,01,1), y*=20, f*= —3615.

By adding the slack variables x4 and x, to the left-hand sides of constraints we
obtain an equality constrained problem.

EXAMPLE 5. Consider the following problem which is formed arbitrarily:

f,() =x5 + x5 — xZ - min
subject to

) =x2+x2+x2-9=0,

f,() + X, — 2%, + X, —2=0,

—-3=x,=<3, i=1, 2, 3.
At iteration k for dual variables (u*, c*), problem to be solved to give x* and H(u*,
c“) is

min [x,.° + x> — x2 + (2 + x5+ x5 —9)" + (x T 2x2 + x, — 2)°)*?

—us X2+ x2—9) —usx, — 2x2 +x, — 2)].
Because of the continuity of the functions f,, f, and f, and the compactness of the
set

S={x=(X;, X,, X5)| —3=x,<3, i=1,2 3}

the optimal values of primal and dual problems must be equal. Table 5 below
summarizes the computations obtained by using the modified subgradient method.

As seen from the Table 5, the values of primal and dual problems calculated at the
second iteration are approximately equal. The approximative values of primal and
dual solutions are x = (0.35, —0.78, 2.87) and u=(— 8.4, 9.4), ¢ = 18.9 respec-
tively.

Table 5. Summary of the computations for Example 5
k) uf, c) (x5, X5, %3) f) HE' ¢ 6] s*

1 (0,00) (-3, -3,3) —63 —63 26.9073 0.468
2 (—84,94,189) (0.35,-0.78,2.87) —8.699210 —8.699213 1.335x107°
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3.2. COMBINATION WITH SUBGRADIENT AND CUTTING PLANE METHOD

We now discuss a strategy for solving the dual problem, in which at each iteration, a
function that approximates the dual function is optimized. First, we present the main
idea of the traditional cutting plane method (see, for example, Bazaraa et al., 1993;
Bertsekas, 1995; and references therein).

Recall that the dual function H is defined by

H(u, c) = inf{f,(x) + c||f(x)| — u’ f(x)|x € S}.

Letting z = H(u, c), the inequality z < f,(x) + c||f(x)|| — u’ f(x) must hold true for each
X €S. Hence the dual problem of maximizing H(u, c) over (u, c)EE™ XR, is
equivalent to the following problem:

maximize z
st z<f,(X)+c[fx)|—u'f(x) forxeS, (u,c)eE™XR, . (15)

Note that the above problem is a linear program in the variables z, u, and c.
Unfortunately, however, the constraints are infinite and are not known explicitly.
Suppose that we have the points x,,...,X,_, in S and consider the following problem:

maximize z
st z=<fo() +cllf(x)| —u'f(x;) forj=1..k—-1, (16)
(u c)EE™XR,.

The above problem is a linear program with a finite number of constraints and can
be solved. Let (z,, u,, c,) be an optimal solution. If this solution satisfies (15), then
it is a solution to the dual problem. To check whether (15) is satisfied, consider the
following subproblem:

minimize  f,(x) + ¢,/ f(X)|| — u.f(x), subject to xES.
Let x, be a solution to the above problem, so that

H(uy, ¢) =fo(x) + Cka(Xk)H = U, f(x,) .

Zk = H(uk’ Ck) ’ (17)

then (u,, c,) is a solution to the dual problem. Otherwise, for (u, c) = (u,, c,) the
inequality (15) is not satisfied for x = x,. Thus, we add the constraint z <f,(x,) +
c||f(x)|| —u’f(x,) to the constraints in (16), and resolve the linear program.
Obviously the current optimal point (z,, u,, c,) contradicts this added constraint.
Thus, this point is cut away and hence the name, cutting plane algorithm.

In this algorithm there is no guarantee that at each iteration the value of the dual
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function will increase. Therefore, modifying this method, we take at each iteration
the best current value of the dual function and increase it by applying the iterates of
the modified subgradient method proposed above. The second novelty that we
present for this method is a stopping criteria. Since the condition (17) is only
sufficient but not necessary for optimality, it may be happened that the procedure
becomes to the optimal solution (u,, c,) but (17) is not still satisfied and therefore
algorithm continues to make new iterates. To remove this situation we use the
necessary and sufficient condition (9) for optimality presented in the Theorem 5.

4. Summary of the method

Initialization Step. Solve the problem: minimize f,(x), subject to x € S.

Let X, be the solution. If f(X,) =0 then stop; X, is a solution to the primal
problem. Otherwise, find a point x, € S such that f(x,) =0, letu,=0,¢c,=0, k=1,
H(u,, ¢,) = f,(X,) + Col| f(X,)|| — uif(X,), and go to the main step.

Main Step 1. Solve the following problem, which is usually referred to as the
master problem.

maximize z
subject to  z=<fy(x;) +c|[f(x)| —u'f(x) forj+1,...,k—1,
(U c)EE™XR, .

Let (z,, U,, C,) be an optimal solution and go to the step 2.
2. Solve the first subproblem: (SP1) minimize f,(x) + ¢, [ f()| — G, f(x),

subject to x €S.

Let X, be an optimal point. If f(X,) = 0 then stop; by Theorem 5, X, is a solution to
the primal problem. Otherwise, let H({,, €,) = f,(X,) + C,/|f(X, )| — G, f(X,) go to the
step 3.

3. Let

(@8, %) = e G0 X i H(l, 6)=H 1 6,
ke Tk (ukf]_l Ckfln Xk*l) OthEI'WISG

and
U = U, — 5, f(X,), ¢ = ¢, + (5 + sIF(xII
where 0 < g <s,, and the stepsize parameter s, may be calculated (cf. (14)) as:
_ o (2, — H(L_'Iki (_:k))
Sy = 2
SlIf(x Il

for 0 < g, <2 and solve the second subproblem

, (18)

(SP2) minimize f,(x) + ¢ f(X)|| — u.f(x), subject to x €.

Let x, be an optimal point and let H(u,, c,)="f,(x.)+ c/IfxJl —u.f(x,). If
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f(x,) = 0 then stop; x, is a solution to the primal problem and (u,, c,) is a solution to
the dual problem. Otherwise, replace k by k + 1, and repeat step 1. [

REMARK 1. The presented above combined algorithm contains either iterations of
the usual cutting plane method (calculated for the dual problem constructed with
respect to the ‘sharp’ Lagrangian) and iterations of modified subgradient method. It
was proved that every limit point of a sequence of dual solutions generated by the
iterations of the cutting plane method is a dual optimal solution (see, for example,
Proposition 6.3.2 in Bertsekas (1995). Since the dual function is continuous (under
hypotheses of Theorem 4 the dual function is concave and finite everywhere on
R™ X R,, which implies the continuity of this function on R™ X (0, + «)), the
corresponding sequence of dual values will converge to the optimal dual value
which coincides with the optimal primal one (by Theorem 4). For the sequence,
generated by the modified subgradient method, the convergence was proved above
in Theorem 9. So, we can conclude that every limit point of the sequence of dual
values generated by the combined method is an optimal value.

REMARK 2. Since z, =sup P*=H(u,, c,), for each k, we use z, as an upper
approximation for H, in (14) and obtain (18).

REMARK 3. It seems that the use of ‘Cutting Angle Method’ (see Rubinov, 2000;
and also Andramanov et al., 1997; Andramanov et al., 1999) for solving subprob-
lems at the Main Step 1 of the Subgradient Method and at the Main Step 2 and 3 of
the Combined Method may give better results for appropriate problems.

Acknowledgements

The author thanks Professor A.M. Rubinov fot helpful discussions on this subject.
Moreover, the author gratefully acknowledges anonymous referees for their excep-
tionally careful reading and constructive criticism. Their useful comments improved
the presentation of this paper and corrected some inaccuracies. The author also
thanks O. Ustun for his help in solving test problems by applying the proposed
method.

References

Andramanov, M.Yu., Rubinov, A.M. and Glover, B.M. (1997), Cutting Angle Method for
Minimizing increasing Convex-Along-Rays Functions, Research Report 97/7, SITMS, Uni-
versity of Ballarat, Australia.

Andramanov, M.Yu., Rubinov, A.M. and Glover, B.M. (1999), Cutting Angle Methods in Global
Optimization, Applied Mathematics Letters 12, 95-100.

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993), Nonlinear Programming. Theory and
Algorithms, John Wiley & Sons, Inc., New York.

Bertsekas, D.P. (1995), Nonlinear Programming, Athena Scientific, Belmont, MA.



202 RAFAIL N. GASIMOV

Buys, J.D. (1972), Dual Algorithms for Constrained Optimization Problems, Doctoral Disserta-
tion, University of Leiden, Leiden, the Netherlands.

Cheney, EW. and Goldstein, A.A. (1959), Newton’s Method for Convex Programming and
Tchebycheff Approximation, Numer. Math. 1, 253-268.

Courant, R. (1943), Variational Methods for the Solution of Problems of Equilibrium and
Vibrations, Bull. Amer. Math. Soc. 49, 1-23.

Demyanov, V.F. (1968), Algorithm for some Minimax Problems, J. Computer and System Sciences
2, 342-380.

Ekeland, I. and Temam, R. (1976) Convex Analysis and Variational Problems, Elsevier—North
Holland, Amsterdam.

Fletcher, R. (1970), A Class of Methods for Nonlinear Programming with Termination and
Convergence Properties, in Abadie, J. (ed.), Integer and Nonlinear Programming, North
Holland, Amsterdam, pp. 157-173.

Floudas, C.A., et al. (1999), Handbook of Test Problems in Local and Global Optimization,
Kluwer Academic Publishers, Dordrecht.

Goffin, J.L. (1977), On Convergent Rates of Subgradient Optimization Methods, Math. Program-
ming 13, 329-347.

Haarhoff, P.C. and Buys, J.D. (1970), A New Method for the Optimization of a Nonlinear
Function Subject to Nonlinear Constraints, Comput. J. 13, 178-184.

Hestenes, M.R. (1969), Multiplier and Gradient Methods, J. Optim. Theory Appl. 4, 303-320.

Himmelblau, D.M. (1972) Applied Nonlinear Optimization, McGraw-Hill Book Company, New
York.

Kelley, J.E. (1960), The Cutting-Plane Method for Solving Convex programs, J. Soc. Indust.
Appl. Math. 8, 703-712.

Khenkin, E.l. (1976), A Search Algorithm for General Problem of Mathematical Programming,
USSR Journal of Computational Mathematics and Mathematical Physics 16, 61-71, (in
Russian).

Kort, BW. and Bertsekas, D.P. (1972), A New Penalty Function Method for Constrained
Minimization, Proc. IEEE Decision and Control Conference, New Orleans, LA, pp. 162-166.

Krein, M.G. and Rutman, M.A. (1962), Linear Operators Leaving Invariant a Cone in a Banach
Space, Trans. Amer. Math. Soc., Providence, RI, 10, 199-325

Pallaschke, D. and Rolewicz, S. (1997), Foundations of Mathematical Optimization (Convex
Analysis without Linearity), Kluwer Academic Publishers, Dordrecht.

Pietrzykowski, T. (1969), An Exact Potential Method for Constrained Maxima, SIAM J. Numer.
Anal. 6, 299-304.

Polak, E. (1997), Optimization. Algorithms and Consistent Approximations, Springer, Berlin.

Poljak, B.T. (1969a), Minimization of Unsmooth Functionals, Z. Wchislitelnoy Matematiki i
Matematicheskoy Fiziki 9, 14-29.

Poljak, B.T. (1969b), The Conjugate Gradient Method in Extremal Problems, Z. Wchislitelnoy
Matematiki i Matematicheskoy Fiziki 9, 94-112.

Poljak, B.T. (1970), Iterative Methods Using Lagrange Multipliers for Solving Extremal Problems
with Constraints of the Equation Type, Z. Weislitelnoy Mat. i Mat. Fiziki 10, 1098—-1106.
Powell, M.J.D. (1969), A Method for Nonlinear Constraints in Minimization Problems, in

Fletcher, R. (ed.), Optimization, Academic Press, New York, pp. 283-298.

Rockafellar, R.T. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.

Rockafellar, R.T. (1993), Lagrange Multipliers and Optimality, SIAM Review 35, 183-238.

Rockafellar, R.T. and Wets, R.J.-B. (1998), Variational Analysis, Springer, Berlin.

Rubinov, A.M. (2000), Abstract Convexity and Global Optimization, Kluwer Academic Pub-
lishers, Dordrecht.

Shor, N.Z. (1985), Minimization Methods for Nondifferentiable Functions, Springer, Berlin.



DUAL METHODS IN NONCONVEX PROGRAMMING 203

Shor, N.Z. (1995), Dual Estimates in Multiextremal Problems, Journal of Global Optimzation 7,
75-91.

Singer, 1. (1997), Abstract Convex Analysis, John Wiley and Sons, Inc., New York.

Wierzbicki, A.P. (1971), A Penalty Function Shifting Method in Constrained Static Optimization
and its Convergence Properties, Arch. Automat. i Telemechaniki 16, 395-415.

Zangwill, W.I. (1967), Nonlinear Programming via Penalty Functions, Management Sci. 13,
344-358.



